If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-9x-523=0
a = 1; b = -9; c = -523;
Δ = b2-4ac
Δ = -92-4·1·(-523)
Δ = 2173
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{2173}}{2*1}=\frac{9-\sqrt{2173}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{2173}}{2*1}=\frac{9+\sqrt{2173}}{2} $
| (8x/3)-9=7 | | 13(2x-8)=130 | | (2x/7)+2=12 | | 20/3=15/x | | (m-8)/5=3 | | (x-3)/4=8 | | 6+3x=5(−x+3)−25 | | x^2-4x-31=-2x+25 | | (60*1.5)=(30/4)=x | | 3x^2+26x+18=9x | | 4-3=2x+7 | | 4(g-3)=16 | | 2x+3x+3x+90+90=360 | | 7x^2-13x-28=x^2-27 | | 3c+8=-8 | | 2(3+4x)=11(8x–14) | | 2x^2-12x-14=x^2-8x | | X/2+14/3=2x/3+3 | | 6y-14=40y= | | 5(x-2)-2x=3x+4 | | 30=15p-17p | | 10x-20=6x-2 | | 18-24/1,5=x | | 5=0.1k | | 18+24/1,5=x | | 8x-12x=22+10 | | x5-40=x2+104 | | 7f+f*f=60 | | 8x+9=-33 | | 5x+8=3x–9 | | x+x 2+x−10=115 | | 2+3×(x+4)=x+5×(x-5)= |